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Problem Definition: @ﬁ?&iﬁiﬁ%‘@gﬁi
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* |Informally, given two different networks
(graphs) how do we access their similarity?

e Actually, the problem can be divided into two
categories:

— Graph similarity with known node correspondence
— Graph similarity with unknown node correspondence



Graph similarity with known
node correspondence

e Given:

I. 2 graphs with the same nodes and
different edge sets

Il. node correspondence

* Find: similarity scores [0,1]
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Application: @w&mﬁs@sﬁz

* Brain network analysis

Different network wiring
between different people ?




Application:

Behavioral patterns analysis

* Large network compression
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* Known node correspondence
— Simple features
— Complex features
 Unknown node correspondence

— Avoiding node correspondence problem
— Finding node correspondence
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Simple Features: @ﬁ?&iﬁﬁ%ﬁi
— \&J

* Simple, and sometimes naive... 2=

* Some examples:
1. Edge Overlap(EO): number of common edges.
2. EVO: Number of common edges and vertices.

__|E DB [+]V, AV |

VEO =
[Ey [+ Eg [+ V, [+] V5]

3. Graph Edit Distance: number of node/edge
additions/deletions to transform G 4to Gp.
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More complex features--- an example I@ﬁ?&iﬁﬁ%ﬁi

1. Find the pairwise node influence, 5,& Sp
2. Find the similarity between 5,& Sp

Sim(Sa,Sg) = : 1

1+~ Euclidean Dist. :1+\/Z (\/S _\/S )2
. i A,ij B.ij

[Koutra, Faloutsos, Vogelstein SDM’13]
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 Known node correspondence
— Simple features
— Complex features
* Unknown node correspondence

— Avoiding node correspondence problem
— Finding node correspondence



Spectral methods: A-distance @’&?&Eﬁ%‘csﬁi
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* d(Gy, Gp) = VI — Api)?
* Ay; = eigenvalues of:

— Adjacency A
— Laplacian L=D—A
— Normalized Laplacian
Lyorm = D~1/24 D~1/2



A-distance : disadvantages I% T e
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* Co-spectral graphs with different structure

SRS

* Subtle changes in the graphs => big differences in
spectra

* 0(n?) runtime --- SVD
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Other Methods : @ﬁ?&iﬁiﬁ%ﬁi
\ /4

* Extracting features from graph
--NETSIMILE
[Berlingerio, Koutra, Eliassi-Rad, Faloutsos ‘13]

For every node extract:

a) degree,

b) clustering coefficient,

c) average degree of neighbors,

d) average clustering coefficient of neighbors,
e) number of edges in ego-network,

f) number of outgoing edges of egonetwork,
g) number of neighbors of ego-network.



Outline: @ﬁ?&iﬁiﬁ%ﬁi
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 Known node correspondence

— Simple features
— Complex features

* Unknown node correspondence
— Avoiding node correspondence problem
— Finding node correspondence



Data Mining Lab

Eigen-Decomposition Approach: @ﬁm;@*aﬁ

* Goal: minp||PAPT — B
(P is an permutation matrix, replacing the

index of each node)

O = O
S O
= o O

[Umeyama ‘ 88]
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Conclusion: when G, and Gg they are isomorphic, the
optimum P can be obtained by maximizing tr(PT|U4||Ug|)
(using Hungarian Method),

where A= UAAAUAT
B = UBABUBT

Optimal for isomorphic graphs, nearly optimal for noiseless
(nearly isomorphic) graphs.

0 (n>) runtime.
Only for graphs of the same size.
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Some tips about graph isomorphism (/& [&]$4) /@ 853 P [T M

* Isomorphism: Intuitively, two objects are isomorphic if they cannot be
distinguished by using only the properties used to define morphism (i.e.
same) (except possibly in their representations).

* Isomorphism of 2 linear vector spaces: if their exists an invertible linear
map between them.

* Isomorphism of 2 graphs: an isomorphism of graphs G and H is
a bijection between the vertex sets of G and H.

The graph isomorphism problem is et e :n isomo;phidstl
. . . etween G an
the computational problem of determining |

whether two finite graphs are isomorphic. ::2 i ;
fle) =8
Laszl6 shows that Graph Isomorphismisin A4 =3
Quasipolynomial Time: that is time of the Ao =5
form ZO(log(n))C‘ £ =2
£(7) =4

Polynomial time is the case when ¢ = 1, but £ =T

any c is a huge improvementover the
previous best result.
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NMF-based Approach: @ﬁ?&iﬁiﬁ%ﬁi

 Goal: minp||PAPT — B||
prl =]
P=0
(P is a permutation matrix)

[Ding+ ‘ 08]



NMF-based Approach: @ﬁ?&iﬁiﬁ*hé
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¢ Step 1: PO |UA||UBT|
e Step 2: Non-Negative Matrix Factorization to find P

- N
Fij « Fij
T ' pT , T N € PU NMF
gL 2B+ APD) 0 01 072 097
)
L 2 ) 10 02 0.19 0.69

10 03 004 0.36
10 04 000 0.19
20 92 1 0.74

Table 1. Success rate for different sizes (V)
and noise levels (¢). Py: using P, and the Hun-
garian algorithm. NMF: using NMF and the
Hungarian algorithm.

. O(n?) runtime
. Guaranteed convergence
Much better results than the

Eigen-Decomposition Approach
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Bipartite Graph Alignment : @ﬁ?&iﬁiﬁ%ﬁi

* |nput:

Bipartite Graph
A, B

* Qutput:
Permutation
matrix P, Q

0 1 0
0 O
0 1

P (users) Q (groups)

0 A B

min||PAQ — B||




Bipartite Graph Alignment :
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° . groups\A B
InpUt' uj110d r u
s[1100Q S
: . eloo14 e
Bipartite Graph rj10o10 g
A, B s[1101
Q (groups)
* Qutput:
Permutation
matrix P, Q

B

1. P;;, Q€ [0,1] (i.e. probabilities (similarities between nodes)
2 constrains

2. P, Q should be sparse (i.e. more efficient for large graphs)

I}f,liQIVIIIP'x‘lQ — Bl + [Py + pllQll4

[Koutra, Tong, Lubensky "13]
e



Bipartite Graph Alignment : @ﬁ?&iﬁiﬁ*hé
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Bupartlte Graphs: Accuracy VS. Runtlme

o ¢ n ‘®Umeyama
1) +NMF-based
© 0.8 ¢ < NetAlign-full
3 o »NetAlign-deg
g 0.6 ® BiG-Align-exact;
e ¢ BiG-Align-skip
g 04- % |
= 4
0.2 o |
© L

10" 10° 10’ 10 10° 10*

runtime (sec)
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Further Reference: @%}z}mﬁz

 http://db.cs.cmu.edu/projects/sraph-similarity-with-
attribution-and-alienment

e http://icdm2014.sfu.ca/program_tutorials.html
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Thanks

F&Q ?
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* Finished?

* Maybe not (if you like) 2
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* WHY Eigenvalues and Eigenvectors Are So
Important ?
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* Given a vector space V:

Vv eV,3abasisof V,i.e. v{,Vy, ..., 0,
s.t. v=a.v1 +aV, + -+ AV,

given a linear transformation T € L(V,V)
Tv=a4Tvy +a,Tv, +---+ a,,Tv,
A1V T ArA2Vy T+ -+ A1 A Um

€ span(vy Vy, ..., Uy, ) .
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 WHY Eigenvalues and Eigenvectors Are So

Important ?

* They give the simplest description of an linear
transformation in a specific space.
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* How do we do with those imperfect linear
transformation?

e The Jordan Normal Form!
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* If Vis a complex vector space, if T € L(V,V),
then V have a Jordan basis of T.

A, 0 Ay 0

. ‘ . ’ Amz . . .

0 - A, 0 - A





