

A Brief Introduction To Graph Similarity

Reporter: Xinzuo Wang

Data Mining Lab, Big Data Research Center, UESTC Email: junmshao@uestc.edu.cn http://staff.uestc.edu.cn/shaojunming

- Informally, given two different networks (graphs) how do we access their similarity?
- Actually, the problem can be divided into two categories:
 - Graph similarity with **known node correspondence**
 - Graph similarity with unknown node correspondence

- Given:
 - I. 2 graphs with the **same nodes** and different edge sets
 - II. node correspondence
- Find: similarity scores [0,1]

- Given: 2 anonymized networks (without node correspondence)
- Find: structural similarity score or node mapping

Application:

• Brain network analysis

Discontinuity detection

Application:

• Behavioral patterns analysis

Large network compression

- Known node correspondence
 - Simple features
 - Complex features
- Unknown node correspondence
 - Avoiding node correspondence problem
 - Finding node correspondence

Simple Features:

- Simple, and sometimes naïve...
- Some examples:

4.

- **1.** Edge Overlap(EO): number of common edges.
- 2. EVO: Number of common edges and vertices.

$$VEO = \frac{|E_A \cap E_B| + |V_A \cap V_B|}{|E_A| + |E_B| + |V_A| + |V_B|}$$

3. Graph Edit Distance: number of node/edge additions/deletions to transform G_A to G_B .

- 1. Find the **pairwise node influence**, $S_A \& S_B$
- 2. Find the **similarity** between $S_A \& S_B$

[Koutra, Faloutsos, Vogelstein SDM'13]

- Known node correspondence
 - Simple features
 - Complex features
- Unknown node correspondence
 - Avoiding node correspondence problem
 - Finding node correspondence

•
$$d(G_{A_i}G_B) = \sqrt{\sum (\lambda_{Ai} - \lambda_{Bi})^2}$$

•
$$\lambda_{Ai} = eigenvalues \ of$$
:

$$-Laplacian$$
 $L = D - A$

$$L_{norm} = D^{-1/2} A D^{-1/2}$$

• Co-spectral graphs with **different** structure

- Subtle changes in the graphs => big differences in spectra
- $O(n^3)$ runtime --- SVD

Other Methods :

Extracting features from graph

 --NETSIMILE
 [Berlingerio, Koutra, Eliassi-Rad, Faloutsos '13]

For every node extract:

- a) degree,
- b) clustering coefficient,
- c) average degree of neighbors,
- d) average clustering coefficient of neighbors,
- e) number of edges in ego-network,
- f) number of outgoing edges of egonetwork,
- g) number of neighbors of ego-network.

Outline:

- Known node correspondence
 - Simple features
 - Complex features
- Unknown node correspondence
 - Avoiding node correspondence problem
 - Finding node correspondence

Eigen-Decomposition Approach:

- Goal: $\min_P ||PAP^T B||$ (P is an **permutation matrix,** replacing the index of each node)
- $\begin{array}{cccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}$

[Umeyama ' 88]

• **Conclusion**: when G_A and G_B they are **isomorphic**, the **optimum** P can be obtained by **maximizing** $tr(P^T|U_A||U_B|)$ (using Hungarian Method),

where
$$A = U_A \Lambda_A U_A^T$$

 $B = U_B \Lambda_B U_B^T$

- **Optimal** for **isomorphic** graphs, **nearly optimal** for noiseless (nearly isomorphic) graphs.
- $O(n^3)$ runtime.
- Only for graphs of the same size.

Some tips about graph isomorphism (图同构)

- Isomorphism: Intuitively, two objects are isomorphic if they cannot be distinguished by using only the properties used to define morphism (i.e. same) (except possibly in their representations).
- **Isomorphism of 2 linear vector spaces**: if their exists an invertible linear map between them.
- Isomorphism of 2 graphs: an isomorphism of graphs G and H is a bijection between the vertex sets of G and H.

The **graph isomorphism problem** is the computational problem of determining whether two finite graphs are isomorphic.

László shows that Graph Isomorphism is in Quasipolynomial Time: that is time of the form $2^{O(\log(n))^c}$.

Polynomial time is the case when c = 1, but any c is a **huge improvement** over the previous best result.

[Ding+ ' 08]

- Step 1: $P_0 = |U_A| |U_B^T|$
- Step 2: Non-Negative Matrix Factorization to find P^{∞}

N	ϵ	P ₀	NMF
10	0.1	0.72	0.97
10	0.2	0.19	0.69
10	0.3	0.04	0.36
10	0.4	0.00	0.19
20	0.2	0	0.74

Table 1. Success rate for different sizes (N) and noise levels (ϵ). P_0 : using P_0 and the Hungarian algorithm. NMF: using NMF and the Hungarian algorithm.

2 constrains $\begin{bmatrix} 1. P_{ij}, Q_{ij} \in [0,1] \text{ (i.e. probabilities (similarities between nodes)} \\ 2. P, Q \text{ should be sparse (i.e. more efficient for large graphs)} \end{bmatrix}$

$$\min_{P,Q} \|PAQ - B\| + \lambda \|P\|_1 + \mu \|Q\|_1$$

[Koutra, Tong, Lubensky '13]

Bipartite Graph Alignment :

Bipartite Graphs: Accuracy vs. Runtime

Further Reference:

- <u>http://db.cs.cmu.edu/projects/graph-similarity-with-attribution-and-alignment</u>
- http://icdm2014.sfu.ca/program_tutorials.html

Thanks

F&Q ?

- Finished?
- Maybe not (if you like) 😕

 <u>WHY</u> Eigenvalues and Eigenvectors Are So Important ?

- Given a vector space V: $\forall v \in V, \exists a \text{ basis of } V, i.e. v_1, v_2, \dots, v_m,$ $s.t. \quad v = a_1v_1 + a_2v_2 + \dots + a_mv_m,$
 - given a linear transformation $T \in \mathcal{L}(V, V)$ $Tv = a_1Tv_1 + a_2Tv_2 + \dots + a_mTv_m$ $= a_1\alpha_1v_1 + a_2\alpha_2v_2 + \dots + a_m\alpha_mv_m$ $\in span(v_1, v_2, \dots, v_m)$.

- WHY Eigenvalues and Eigenvectors Are So Important ?
- They give the **simplest description** of an linear transformation in a specific space.

- How do we do with those imperfect linear transformation?
- The Jordan Normal Form!

• If V is a complex vector space, if $T \in \mathcal{L}(V, V)$, then V have a Jordan basis of T.

$$\begin{bmatrix} A_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & A_m \end{bmatrix}, A_m = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_k \end{bmatrix}$$